首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   139篇
  免费   10篇
  2021年   7篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2014年   4篇
  2013年   2篇
  2012年   7篇
  2011年   5篇
  2010年   3篇
  2009年   4篇
  2008年   4篇
  2007年   6篇
  2006年   7篇
  2005年   5篇
  2004年   8篇
  2003年   2篇
  2002年   6篇
  2001年   3篇
  2000年   3篇
  1999年   4篇
  1998年   10篇
  1997年   5篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   5篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1981年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1971年   1篇
  1905年   2篇
排序方式: 共有149条查询结果,搜索用时 187 毫秒
81.
82.
Modern birds have extremely short tail skeletons relative to Archaeopteryx and nonavialian theropod dinosaurs. Long- and short-tailed birds also differ in the conformation of main tail feathers making up the flight surface: frond shaped in Archaeopteryx and fan shaped in extant fliers. Mechanisms of tail fanning were evaluated by electromyography in freely flying pigeons and turkeys and by electrical stimulation of caudal muscles in anesthetized birds. Results from these experiments reveal that the pygostyle, rectrices, rectricial bulbs, and bulbi rectricium musculature form a specialized fanning mechanism. Contrary to previous models, our data support the interpretation that the bulbi rectricium independently controls tail fanning; other muscles are neither capable of nor necessary for significant rectricial abduction. This bulb mechanism permits rapid changes in tail span, thereby allowing the exploitation of a wide range of lift forces. Isolation of the bulbs on the pygostyle effectively decouples tail fanning from fan movement, which is governed by the remaining caudal muscles. The tail of Archaeopteryx, however, differs from this arrangement in several important respects. Archaeopteryx probably had a limited range of lift forces and tight coupling between vertebral and rectricial movement. This would have made the tail of this primitive flier better suited to stabilization than maneuverability. The capacity to significantly alter lift and manipulate the flight surface without distortion may have been two factors favoring tail shortening and pygostyle development during avian evolution.  相似文献   
83.
84.
85.
Bacterial spores are widespread in marine sediments, including those of thermophilic, sulphate-reducing bacteria, which have a high minimum growth temperature making it unlikely that they grow in situ. These Desulfotomaculum spp. are thought to be from hot environments and are distributed by ocean currents. Their cells and spores upper temperature limit for survival is unknown, as is whether they can survive repeated high-temperature exposure that might occur in hydrothermal systems. This was investigated by incubating estuarine sediments significantly above (40–80 °C) maximum in situ temperatures (∼23 °C), and with and without prior triple autoclaving. Sulphate reduction occurred at 40–60 °C and at 60 °C was unaffected by autoclaving. Desulfotomaculum sp. C1A60 was isolated and was most closely related to the thermophilic D. kuznetsoviiT (∼96% 16S rRNA gene sequence identity). Cultures of Desulfotomaculum sp. C1A60, D. kuznetsoviiTand D. geothermicum B2T survived triple autoclaving while other related Desulfotomaculum spp. did not, although they did survive pasteurisation. Desulfotomaculum sp. C1A60 and D. kuznetsovii cultures also survived more extreme autoclaving (C1A60, 130 °C for 15 min; D. kuznetsovii, 135 °C for 15 min, maximum of 154 °C reached) and high-temperature conditions in an oil bath (C1A60, 130° for 30 min, D. kuznetsovii 140 °C for 15 min). Desulfotomaculum sp. C1A60 with either spores or predominantly vegetative cells demonstrated that surviving triple autoclaving was due to spores. Spores also had very high culturability compared with vegetative cells (∼30 × higher). Combined extreme temperature survival and high culturability of some thermophilic Desulfotomaculum spp. make them very effective colonisers of hot environments, which is consistent with their presence in subsurface geothermal waters and petroleum reservoirs.  相似文献   
86.
87.
We show that aerial tips are self‐similar fractals of whole shrubs and present a field method that applies this fact to improves accuracy and precision of biomass estimates of tall‐shrubs, defined here as those with diameter at root collar (DRC) ≥ 2.5 cm. Power function allometry of biomass to stem diameter generates a disproportionate prediction error that increases rapidly with diameter. Thus, biomass should be modeled as a single measure of stem diameter only if stem diameter is less than a threshold Dmax. When stem diameter exceeds Dmax, then the stem internode should be treated as a conic frustrum requiring two additional measures: a second, node‐adjacent diameter and a length. If the second diameter is less than Dmax, then the power function allometry can be applied to the aerial tip; otherwise an additional internode is measured. This “two‐component” allometry—internodes as frustra and aerial tips as shrubs—can reduce estimated biomass error propagated to the plot‐level by as much as 50% or more where very large shrubs are present Dmax is any diameter such that the ratio of single‐component to two‐component uncertainty exceeds the ratio of two‐component to single‐component measurement time. Guidelines for estimating Dmax based on pilot field data are provided. Tall shrubs are increasing in abundance and distribution across Arctic, alpine, boreal, and dryland ecosystems. Estimating their biomass is important for both ecological studies and carbon accounting. Reducing field‐sample prediction error increases precision in multi‐stage modeling because additional measures efficiently improve plot‐level biomass precision, reducing uncertainty for shrub biomass estimates.  相似文献   
88.
89.
90.

Background  

Comparisons of functionally important changes at the molecular level in model systems have identified key adaptations driving isolation and speciation. In cichlids, for example, long wavelength-sensitive (LWS) opsins appear to play a role in mate choice and male color variation within and among species. To test the hypothesis that the evolution of elaborate coloration in male guppies (Poecilia reticulata) is also associated with opsin gene diversity, we sequenced long wavelength-sensitive (LWS) opsin genes in six species of the family Poeciliidae.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号